Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of poly[aquadi- μ_{3}-oxy-diacetato-dicopper(II)]

Ming-Lin Guo

School of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Polytechnic University,
Tianjin 300160, People's Republic of China
Correspondence e-mail: guomlin@yahoo.com
Received 16 November 2007; accepted 5 December 2007
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; disorder in main residue; R factor $=0.039 ; w R$ factor $=0.085$; data-to-parameter ratio $=14.5$.

The title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, has a two-dimensional layer structure. The Cu atom has a distorted octahedral $\left(\mathrm{CuO}_{6}\right)$ environment and is coordinated by four carboxylate group O atoms from three different oxydiacetate ligands in a planar arrangement and one half-occupancy water molecule and an ether O atom in the axial positions. In the crystal structure, weak intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds help to stabilize the crystal packing. The structure has already been published [Whitlow \& Davey (1975). J. Chem. Soc. Dalton. Trans. pp. 1228-1232]; this redetermination reports the structure with higher precision.

Related literature

For related literature, see: Whitlow \& Davey (1975).

Experimental

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=409.24$
Orthorhombic, Pbcn
$a=9.2695$ (11) \AA

$$
\begin{aligned}
& b=14.3052(2) \AA \\
& c=9.2715(11) \AA \\
& V=1229.4(2) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=3.52 \mathrm{~mm}^{-1}$
$T=294$ (2) K
$0.16 \times 0.10 \times 0.06 \mathrm{~mm}$
Data collection
Rigaku Saturn diffractometer
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.660, T_{\text {max }}=0.812$
1544 measured reflections
1477 independent reflections 1385 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
102 parameters
$w R\left(F^{2}\right)=0.085$
H -atom parameters constrained
$S=1.09$
1477 reflections
$\Delta \rho_{\text {max }}=0.73 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.55 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.950(3)$	$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{ii}}$	$1.958(3)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$1.953(3)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$2.498(3)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.955(3)$	$\mathrm{Cu} 1-\mathrm{O} 6$	$2.746(8)$

Symmetry codes: (i) $-x+\frac{3}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6B \cdots O5	0.85	2.49	$2.909(8)$	112
O6-H6 \cdots O3ii	0.85	2.22	$2.996(11)$	152
O6-H6A \cdots O1	0.85	2.05	$2.905(8)$	180

Symmetry code: (iii) $-x+\frac{3}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL

We thank Tianjin Polytechnic University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2052).

References

Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan
Rigaku/MSC (2005). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.
Whitlow, S. H. \& Davey, G. (1975). J. Chem. Soc. Dalton Trans. pp. 1228-1232.

supplementary materials

Redetermination of poly[aquadi- μ_{3}-oxydiacetato-dicopper(II)]

M.-L. Guo

Comment

The structure of the title complex, (I), was determined some years ago [Whitlow \& Davey, 1975)] using diffraction data collected at ambient temperature, the determination gave higher R values $(R=0.088)$ and $Z=8$. The information of the structure was not found at the database of CCDC. Complex, (I), has been obtained as a by-product of study of heterobimetallic complexes involving $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and oxydiacetic acid, using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as base. We have taken this opportunity to redetermine the structure of (I) at 294 (2) K, leading to significantly improved precision.

The asymmetric unit in the structure of (I) comprises one Cu atom, one complete oxydiacetate dianion and half a water molecule, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination of the Cu atom. Selected geometric parameters are given in Table 1. The Cu atom has octahedral coordination, with $\mathrm{O} 1, \mathrm{O} 5, \mathrm{O} 2^{\mathrm{ii}}$ and $\mathrm{O} 4^{\mathrm{i}}$ of three nonequivalent oxydiacetate dianions in a planar arrangement, and O 3 and O 6 atoms from one ether oxygen and half a water molecules in a trans conformation. Thus, the coordination octahedra of the Cu atoms can be visualized as having an elongated axial distortion.

In the structure of (I), each Cu atom is bonded to an oxydiacetate ligand via the O 1 and O 5 atoms of carboxylate groups and the ether oxygen O 3 atom, each oxydiacetate ligand connect with other two Cu atoms via the O 2 and O 4 atom as a monodentate bonding mode and a bridging bonding mode, respectively. These result in the $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1$ separations are $4.8666(9) \AA$ and 4.8501 (10) \AA, respectively, and complete a two-dimensional layer connectivity of the structure parallel to $a c$ plane. A number of weak intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds interactions (see Table 2) further stabilize the two-dimensional framework within this layer. A packing diagram for the structure of (I) is shown in Fig. 2.

Experimental

A mixture of 20 ml aqueous solution of sodium carbonate anhydrous ($0.43 \mathrm{~g}, 4 \mathrm{mmol}$) and oxydiacetic acid ($0.54 \mathrm{~g}, 4.0$ $\mathrm{mmol})$ was added dropwise into a solution of cupric nitrate $(0.49 \mathrm{~g}, 2 \mathrm{mmol})$ and barium nitrate $(0.52 \mathrm{~g}, 2 \mathrm{mmol})$ in 20 ml of distillated water under stirring at the room temperature for 20 min . After filtration, slow evaporation the filtrate over a period of two week at room temperature provided the crystals of (I).

Refinement

The H atoms of the water molecule were found in difference Fourier maps and during refinement were fixed at an $\mathrm{O}-\mathrm{H}$ distance of $0.85 \AA$, and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The H atoms of $\mathrm{C}-\mathrm{H}$ groups were placed geometrically and during refinement were treated using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. A view of the structure of (I), showing the atom-numbering Scheme; displacement ellipsoids were drawn at the 30% probability level. Symmetry codes (i) $-x+3 / 2,-y+1 / 2, z+1 /$ 2 ; (ii) $x+1 / 2,-y+1 / 2,-z+1$.

Fig. 2. Packing diagram showing hydrogen bonds interactions, viewed down the b axis.

poly[aquadi- μ_{3}-oxydiacetato-dicopper(II)]

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=409.24$

Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=9.2695$ (11) \AA
$b=14.3052$ (2) \AA
$c=9.2715(11) \AA$
$V=1229.4(2) \AA^{3}$
$Z=4$

Data collection

Rigaku Saturn
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: confocal
Detector resolution: 28.5714 pixels mm^{-1}
$T=294(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
$F_{000}=816$
$D_{\mathrm{x}}=2.211 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1544 reflections
$\theta=2.6-27.9^{\circ}$
$\mu=3.52 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Plate, blue
$0.16 \times 0.10 \times 0.06 \mathrm{~mm}$
(Jacobson, 1998)
$T_{\text {min }}=0.660, T_{\text {max }}=0.812 \quad l=-1 \rightarrow 12$
1544 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.085$
$S=1.09$
1477 reflections
102 parameters

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0397 P)^{2}+0.8539 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.73 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.54$ e \AA^{-3}
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0116 (11) methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Cu1	$0.72930(5)$	$0.20200(3)$	$0.46964(6)$	$0.02384(17)$	
O1	$0.5403(3)$	$0.2600(2)$	$0.4973(5)$	$0.0304(8)$	
O2	$0.3991(3)$	$0.3753(2)$	$0.5700(4)$	$0.0287(7)$	
O3	$0.7808(3)$	$0.37024(17)$	$0.5203(3)$	$0.0227(5)$	
O4	$0.8062(4)$	$0.3780(3)$	$0.1361(3)$	$0.0314(7)$	
O5	$0.7509(4)$	$0.2607(3)$	$0.2807(4)$	$0.0293(8)$	
C1	$0.5227(4)$	$0.3416(3)$	$0.5428(5)$	$0.0227(9)$	
C2	$0.6489(4)$	$0.4050(3)$	$0.5749(5)$	$0.0245(9)$	
H2A	0.6305	0.4661	0.5332	0.029^{*}	
H2B	0.6572	0.4128	0.6785	0.029^{*}	
C3	$0.8234(5)$	$0.4079(3)$	$0.3855(5)$	$0.0301(11)$	0.036^{*}
H3A	0.9263	0.4200	0.3874	0.036^{*}	

C4	$0.7895(5)$	$0.3437(3)$	$0.2599(5)$	$0.0242(9)$	
O6	$0.5441(8)$	$0.1079(4)$	$0.2898(10)$	$0.0489(19)$	0.50
H6A	0.5427	0.1526	0.3503	0.059^{*}	0.50
H6B	0.5810	0.1331	0.2154	0.059^{*}	0.50

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0263(3)$	$0.0194(2)$	$0.0258(3)$	$0.0012(2)$	$0.00097(18)$	$-0.0001(3)$
O1	$0.0215(14)$	$0.0259(19)$	$0.044(2)$	$-0.0007(11)$	$-0.0010(19)$	$-0.0069(15)$
O2	$0.0237(15)$	$0.0221(17)$	$0.040(2)$	$0.0032(12)$	$0.0019(12)$	$0.0019(15)$
O3	$0.0205(12)$	$0.0265(13)$	$0.0212(14)$	$0.0001(10)$	$0.0026(10)$	$-0.0004(12)$
O4	$0.0426(18)$	$0.0308(19)$	$0.0207(16)$	$-0.0011(15)$	$0.0001(13)$	$-0.0009(13)$
O5	$0.0404(18)$	$0.0229(19)$	$0.0246(14)$	$-0.0042(13)$	$-0.0009(17)$	$-0.0016(13)$
C1	$0.023(2)$	$0.024(2)$	$0.022(2)$	$0.0011(16)$	$-0.0022(15)$	$0.006(2)$
C2	$0.025(2)$	$0.022(2)$	$0.026(3)$	$0.0014(16)$	$0.0015(16)$	$-0.0053(18)$
C3	$0.034(2)$	$0.030(2)$	$0.026(3)$	$-0.0036(19)$	$0.003(2)$	$0.0000(18)$
C4	$0.020(2)$	$0.028(2)$	$0.025(2)$	$0.0027(18)$	$-0.0024(16)$	$-0.0006(17)$
O6	$0.055(6)$	$0.027(3)$	$0.064(7)$	$0.005(3)$	$0.021(3)$	$0.003(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Cu1-O4 ${ }^{\text {i }}$	1.950 (3)	$\mathrm{O} 4-\mathrm{Cu}^{\text {iv }}$	1.950 (3)
Cu1-O5	1.953 (3)	O5-C4	1.255 (5)
Cu1-O1	1.955 (3)	$\mathrm{C} 1-\mathrm{C} 2$	1.510 (6)
$\mathrm{Cu}-\mathrm{O} 2^{\text {ii }}$	1.958 (3)	C2-H2A	0.9700
Cu1-O3	2.498 (3)	C2-H2B	0.9700
$\mathrm{Cu}-\mathrm{O} 6$	2.746 (8)	$\mathrm{C} 3-\mathrm{C} 4$	1.516 (6)
O1-C1	1.252 (5)	C3-H3A	0.9700
O2- C 1	1.268 (5)	C3-H3B	0.9700
O2-Cu1 ${ }^{\text {iii }}$	1.958 (3)	O6- $\mathrm{O6}^{\text {v }}$	1.101 (13)
O3-C2	1.414 (4)	O6-H6A	0.8504
O3-C3	1.417 (5)	O6-H6B	0.8505
O4-C4	1.258 (5)		
$\mathrm{O} 4{ }^{\text {i }} \mathrm{Cu} 1-\mathrm{O} 5$	168.50 (15)	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 1$	89.68 (15)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.0
O5-Cu1-O1	91.52 (11)	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 2{ }^{\text {ii }}$	87.29 (12)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.0
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {ii }}$	89.56 (14)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.8
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2^{\mathrm{ii}}$	169.87 (14)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	112.9 (4)
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 6$	134.91 (15)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	74.80 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 6$	74.19 (19)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.0
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu} 1$	123.9 (3)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.0
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cu} 1^{\text {iii }}$	118.4 (3)	H3A-C3-H3B	107.8
C2-O3-C3	115.0 (3)	O5-C4-O4	123.0 (4)
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{Cu} 1^{\text {iv }}$	118.2 (3)	O5-C4-C3	121.0 (4)

sup-4

supplementary materials

C4-O5-Cu1	125.0 (3)	O4-C4-C3	116.1 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	122.6 (4)	O6 ${ }^{\mathrm{v}}-\mathrm{O} 6-\mathrm{H} 6 \mathrm{~A}$	115.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	121.7 (4)	O6 ${ }^{\mathrm{v}}-\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B}$	75.8
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	115.6 (4)	H6A-O6-H6B	102.9
O3-C2-C1	112.8 (3)		
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$	108.4 (4)	C3-O3-C2-C1	97.3 (4)
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$	-83.1 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	12.5 (7)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$	-179.1 (7)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-170.0 (4)
$\mathrm{O} 4{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{O} 5-\mathrm{C} 4$	176.0 (6)	$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	-100.0 (4)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 5-\mathrm{C} 4$	80.1 (4)	$\mathrm{Cu} 1-\mathrm{O} 5-\mathrm{C} 4-\mathrm{O} 4$	177.8 (3)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{O} 5-\mathrm{C} 4$	-110.0 (4)	$\mathrm{Cu} 1-\mathrm{O} 5-\mathrm{C} 4-\mathrm{C} 3$	-0.3 (7)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-174.6 (3)	$\mathrm{Cu} 1^{\text {iv }}-\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 5$	-0.2 (6)
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	2.7 (7)	$\mathrm{Cu} 1^{\text {iv }}-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	178.0 (3)
$\mathrm{Cu} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	-2.9 (7)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 5$	-11.2 (6)
$\mathrm{Cu} 1{ }^{\text {iii }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	179.6 (3)	O3-C3-C4-O4	170.6 (4)

Symmetry codes: (i) $-x+3 / 2,-y+1 / 2, z+1 / 2$; (ii) $x+1 / 2,-y+1 / 2,-z+1$; (iii) $x-1 / 2,-y+1 / 2,-z+1$; (iv) $-x+3 / 2,-y+1 / 2, z-1 / 2$; (v) $-x+1$, $y,-z+1 / 2$.

Hydrogen-bond geometry ($\left(\stackrel{\circ}{ }{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 5$	0.85	2.49	$2.909(8)$	112
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 3^{\text {iv }}$	0.85	2.22	$2.996(11)$	152
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{O} 1$	0.85	2.05	$2.905(8)$	180

Symmetry codes: (iv) $-x+3 / 2,-y+1 / 2, z-1 / 2$.

Fig. 1

Fig. 2

